Region-Based U-Net for Accelerated Training and Enhanced Precision in Deep Brain Segmentation

Mengyu Li, Magnus Magnusson, Thilo Van Eimeren, Lotta M. Ellingsen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Segmentation of brain structures on MRI is the primary step for further quantitative analysis of brain diseases. Manual segmentation is still considered the gold standard in terms of accuracy; however, such data is extremely time-consuming to generate. This paper presents a deep learning-based segmentation approach for 12 deep-brain structures, utilizing multiple region-based U-Nets. The brain is divided into three focal regions of interest that encompass the brainstem, the ventricular system, and the striatum. Next, three region-based U-nets are run in parallel to parcellate these larger structures into their respective four substructures. This approach not only greatly reduces the training and processing times but also significantly enhances the segmentation accuracy, compared to segmenting the entire MRI image at once. Our approach achieves remarkable accuracy with an average Dice Similarity Coefficient (DSC) of 0.901 and 95% Hausdorff Distance (HD95) of 1.155 mm. The method was compared with state-of-the-art segmentation approaches, demonstrating a high level of accuracy and robustness of the proposed method.

Original languageEnglish
Title of host publicationIEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9798350313338
DOIs
Publication statusPublished - 2024
Event21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, Greece
Duration: 27 May 202430 May 2024

Publication series

NameProceedings - International Symposium on Biomedical Imaging

Conference

Conference21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
Country/TerritoryGreece
CityAthens
Period27/05/2430/05/24

Bibliographical note

Publisher Copyright: © 2024 IEEE.

Other keywords

  • MRI
  • Parkinson-plus syndromes
  • brain segmentation
  • brainstem
  • deep neural networks
  • striatum
  • ventricles

Fingerprint

Dive into the research topics of 'Region-Based U-Net for Accelerated Training and Enhanced Precision in Deep Brain Segmentation'. Together they form a unique fingerprint.

Cite this